Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 481-490, 2021.
Article in Chinese | WPRIM | ID: wpr-950218

ABSTRACT

Objective: To evaluate the anti-inflammatory activity of Crotalaria ferruginea extract (CFE) and its mechanism. Methods: An intratracheal lipopolysaccharide (LPS) instillation-induced acute lung injury (ALI) model was used to study the anti-inflammatory activity of CFE in vivo. The LPS-induced shock model was used to analyze the effect of CFE on survival. LPS-stimulated RAW264.7 cell model was used to investigate the anti-inflammatory activity of CFE in vitro and the effects on mitogen-Activated protein kinase (MAPK) or nuclear factor-κB (NF-κB) signaling pathways. Results: CFE administration decreased the number of inflammatory cells, reduced the levels of tumor necrosis factor-α (TNF-A), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), and interferon-γ, and diminished protein content in the bronchoalveolar lavage fluid of mice. CFE also reduced lung wet-To-dry weight ratio, myeloperoxidase, and lung tissue pathological injury. CFE pre-Administration improved the survival rate of mice challenged with a lethal dose of LPS. CFE reduced LPS-Activated RAW264.7 cells to produce nitric oxide, TNF-α, MCP-1, and IL-6. Furthermore, CFE inhibited nuclear translocation and phosphorylation of NF-κB P65, extracellular signal-regulated kinase, c-Jun N-Terminal kinases, and P38 MAPKs. Conclusions: CFE exhibits potent anti-inflammatory activity in LPS-induced ALI mice, LPS-shock mice, and RAW264.7 cells, and its mechanism may be associated with the inhibition of NF-κB and MAPK signaling pathways. Crotalaria ferruginea may be a useful therapeutic drug for the treatment of ALI and other respiratory inflammations.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 481-490, 2021.
Article in Chinese | WPRIM | ID: wpr-942782

ABSTRACT

Objective: To evaluate the anti-inflammatory activity of Crotalaria ferruginea extract (CFE) and its mechanism. Methods: An intratracheal lipopolysaccharide (LPS) instillation-induced acute lung injury (ALI) model was used to study the anti-inflammatory activity of CFE in vivo. The LPS-induced shock model was used to analyze the effect of CFE on survival. LPS-stimulated RAW264.7 cell model was used to investigate the anti-inflammatory activity of CFE in vitro and the effects on mitogen-Activated protein kinase (MAPK) or nuclear factor-κB (NF-κB) signaling pathways. Results: CFE administration decreased the number of inflammatory cells, reduced the levels of tumor necrosis factor-α (TNF-A), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), and interferon-γ, and diminished protein content in the bronchoalveolar lavage fluid of mice. CFE also reduced lung wet-To-dry weight ratio, myeloperoxidase, and lung tissue pathological injury. CFE pre-Administration improved the survival rate of mice challenged with a lethal dose of LPS. CFE reduced LPS-Activated RAW264.7 cells to produce nitric oxide, TNF-α, MCP-1, and IL-6. Furthermore, CFE inhibited nuclear translocation and phosphorylation of NF-κB P65, extracellular signal-regulated kinase, c-Jun N-Terminal kinases, and P38 MAPKs. Conclusions: CFE exhibits potent anti-inflammatory activity in LPS-induced ALI mice, LPS-shock mice, and RAW264.7 cells, and its mechanism may be associated with the inhibition of NF-κB and MAPK signaling pathways. Crotalaria ferruginea may be a useful therapeutic drug for the treatment of ALI and other respiratory inflammations.

3.
China Journal of Chinese Materia Medica ; (24): 1793-1797, 2015.
Article in Chinese | WPRIM | ID: wpr-351263

ABSTRACT

Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01), serum AST, ALT (P < 0.01), T3 level (P < 0.05), TSH level (P < 0.05) and notable deceases in pain domain (P < 0.01), TG level (P < 0.01). (2) Compared with the model control group, extracts from DOF (6 g · kg(-1)) could notably reduce facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01) and AST (P < 0.05) and enhance pain domain (P < 0.01) and TG (P < 0.01). Extracts from DOF (4 g · kg(-1)) could remarkably reduce AST and ALT levels (P < 0.01, 0.05). Extracts from DOF (6 g · kg(-1) 4 g · kg(-1)) could significantly reduce T3 and increase serum TSH level (P < 0.05). DOF could improve Yin deficiency symptoms of zygomatic red and dysphoria in mice as well as liver function injury caused by overactive thyroid axis. According to its action mechanism, DOF may show yin nourishing and hepatic protective effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.


Subject(s)
Animals , Female , Humans , Male , Mice , Dendrobium , Chemistry , Drugs, Chinese Herbal , Flowers , Chemistry , Hyperthyroidism , Drug Therapy , Metabolism , Mice, Inbred ICR , Phytotherapy , Thyroxine , Metabolism , Yin Deficiency , Drug Therapy , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL